

Subject: Chemistry

platinum

least reactive

Na

Ca

Ma.

Zn

Fe Sn

Pb

Cu

Aq

Au

Pt

Relative formula mass (M,)

 $M_r = 106 \text{ g/mol}$

C4 – Quantitative Chemistry

The mass number tells you the relative atomic mass (A,) for each atom. Relative formula mass is the sum of the relative atomic masses for all atoms in a compound.

Conservation of mass If a reaction produces a gas, the mass appears to decrease as the gas escapes into the surroundings. If a reaction involves adding a gas from the surroundings, the mass appears to increase. However, the total mass of the reactants is always equal to the total mass

of the products.

Concentration The amount of substance dissolved in a given volume of solution is the concentration. It is measured in g/dm^3 .

8-8-90		concentration (g/dm ³)		ma	ass (g)	_
	5200			volur	ne (dm³)	
	As	s 1dm is equa	l to 1	0cm, 1d	m ³ is equal	to 1000cm ³ .
Low concentration conc	High	volume	= .	volum	ne (cm ³)	
concentration	onitation	(dm³)		10	00	
Higher Only (Content	number o	f mol	es	mass (g)
Moles Avogadro's number (mol) = M _r (g/mc					nol)	
is 6.02 x 10²³ . It's number used to r counting particles chemical reaction	just a nake s easier in ns.	mass ₌ (g)	= (g	M _r g/mol)	x numb	er of moles (mol)
Concentration	con	centration	=	numb	er of mole	es (mol)
This can also be (mol/dm ³) volume (dm ³)						m³)
mol/dm ³ .	concentra (g/dm ³	ition ₌ co	<mark>once</mark> (mol	ntration /dm ³)	x	M _r (g/mol)
Gas volumes A	t room terr	perature and	l pres	sure, on	e mole of a	any gas
occupies 24dm ³ .	number of moles		_	volun	ne (dm ³)	
		nol)	-	2	4	

Reactions of metals & acids metal + oxygen \rightarrow metal oxide	C5 – Chemical Changes				
$4 \text{ Na} + \text{O}_2 \rightarrow 2 \text{ Na}_2\text{O}$		potassium	most reactive	К	
metal + water \rightarrow metal hydroxide + hydroxide	sodium		Na		
2 Li + 2 H ₂ O \rightarrow 2 LiOH + H ₂		caidum magnesium		Mg	
metal + acid → a salt + hydrogen	aluminium		Al		
$Ca + 2 HCl \rightarrow CaCl_2 + H_2$	carbon		С		
metal oxide + acid \rightarrow a salt + water	zinc iron		Zn Fe		
$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$	tin		Sn		
metal hydroxide + acid \rightarrow a salt + wate	lead		Pb		
$AI(OH)_{2} + 3 HNO_{2} \rightarrow AI(NO_{2})_{2} + 3 H_{2}O$		hydrogen		Н	
metal carbonate + acid \rightarrow a salt + wate	ciluor		Cu		
		and		AU	
$FecO_3 + 2 HO_2CCH_3 \rightarrow Fe(O_2CCH_3)_2 + H$	$_{2}0 + CO_{2}$	2	1		

A more reactive metal can **displace** a less reactive metal from its compound. Word Equation: copper + silver nitrate \rightarrow silver + copper nitrate Symbol Equation: $Cu + 2 AgNO_3 \rightarrow 2 Ag + Cu(NO_3)_2$ Ionic Equation: $Cu + 2 Ag^+ \rightarrow 2 Ag + Cu^{2+}$ Half Equations:

 $Cu - 2e^{-} \rightarrow 2Ag + Cu^{2+}$ $2 \text{ Ag}^+ + 2 \text{ e}^- \rightarrow 2 \text{ Ag}$

Losing Electrons Oxidation Gaining Electrons Reduction

Required Practical: Making Salts

1. Add excess base to acid until it no longer dissolves (when all acid has reacted)

2. Filter the mixture to remove excess base.

3. Evaporate the filtrate solution and leave to dry.

All acids produce hydrogen ions (H⁺) in aqueous solution. A base is a substance that neutralises an acid. An alkali is a water soluble base which produced hydroxide ions (OH⁻) in aqueous solution.

Neutralisation Equation: H^+ (aq) + OH^- (aq) \rightarrow H2O (I) **Strong acid** (hydrochloric, sulfuric, nitric) - fully ionised in aqueous solution. Weak acid (ethanoic, citric, carbonic) - partially ionised in aqueous solution. A pH less than 7 is acidic, pH 7 is neutral, a pH more than 7 is alkaline. As the pH decreases by 1, the H+ concentration increases by a factor of 10.

Subject: Chemistry

Vocabulary:

Word	Meaning
atom economy	A measure of the amount of starting materials that end up as useful products.
Avogadro constant	The number of atoms, molecules or ions in a mole of any substance (i.e., 6.02×10^{23} per mol).
mole	The amount of substance in the relative atomic or formula mass of a substance in grams.
percentage yield	The actual mass of product collected in a reaction divided by the maximum mass that could have been formed in theory, multiplied by 100.
relative formula mass, M _r	The total of the relative atomic masses, added up in the ratio shown in the chemical formula of a substance.
Word	Meaning
acid	Acids are proton donors. They release hydrogen ions (H ⁺) in solution.
alkali	A water-soluble base. It produces hydroxide ions (OH) in solution.
base	Any substance that neutralises an acid. Usually a metal oxide, hydroxide or carbonate.
displacement reaction	A reaction in which a more reactive element takes the place of a less reactive element in one of its compounds or in solution.
half equation	An equation that describes oxidation (losing electrons) or reduction (gaining electrons).
ionic equation	An equation that shows only those ions or atoms that change in a chemical reaction.
neutralisation	The chemical reaction of an acid with a base to produce a salt and water (and carbon dioxide if a carbonate is used). A solution of pH 7 is formed.
oxidation	A reaction in which oxygen is added or electrons are lost.
рН	A number which shows how strongly acidic or alkaline a solution is.
reactivity series	A list of elements in order of their reactivity.
reduction	A reaction in which oxygen is removed or electrons are gained.
strong acids	These acids completely ionise in solution and have a high concentration of $\rm H^+$ (aq) ions in solution.
weak acids	Acids that do not ionise completely in aqueous solutions.

Videos Quizzes

