My mathematical journey

What do I need to remember from before?

Place value of numbers up to 10000000 (KS2)

Rounding numbers to the nearest 10, 100, 1000, 10000 and 100000 (KS2)

Rounding decimals to
1, 2 or 3 decimal places (KS2)
Ordering negative numbers on a number line (KS2)

Multiplying and dividing numbers by 10, 100 and 1000

What will I learn about in this unit?

Writing integers and decimals in expanded form and words

Ordering numbers
Rounding to decimal places and to significant figures

Converting metric units
Finding the midpoint of two numbers

Finding the median of discrete data

Where does this lead?

Addition \& subtraction (NP2)
Multiplication \& division (NP3)
Percentages, fractions \&
decimals (NP8)
Estimation (NP9)
Analysing discrete data (SP1)
Using units of measure (all GM units and many SP units)

Standard form (NP12)
Indices \& surds (NP15)

Key words \& symbols

Word	Explanation	Symbol	How to read it
number	a value or a quantity used to count or measure	$<$	is less than
digit	a symbol we use to make numbers, such as " 0 " or " 9 "	>	is greater than
numeral	a number written with digits, such as "213" or "0.5"	\leq	is less than or equal to
integer	a "whole" number (with no decimal part), such as 15 or 510 , but not 2.5	\geq	is greater than or equal to
base 10	our numeral system, where each column is worth a different power of 10	=	is equal to
decimal	means "base 10" but more often used for non-integers written like this: 2.5 or 38.7	\#	is not equal to
less than	numbers further left on the number line	\approx	is approximately equal to
greater than	numbers further right on the number line		
ascending	going up		
descending	going down		

Fingertip facts: what I need to learn by heart

Prefix	micro-	milli-	centi-	kilo-	mega-	giga-
Symbol	μ	m	c	k	M	G
Scale factor	0.00001	0.001	0.01	1000	1000000	1000000000
Example (using grams)	$1 \mu \mathrm{~g}$ is one millionth of a gram	1 mg is one thousandth of a gram	1 cg is one hundredth of a gram	1 kg is one thousand grams	1 Mg is one million grams	1 Gg is one billion grams

My mathematical journey

Key words: what I need to say and write accurately

Word	Explanation
commutative	if you can change the order of the numbers and not change the answer, then the operation is commutative. e.g. $5+7=12$ and $7+5=12$, so addition is commutative e.g. $20-6=14$ and $6-20=-14$, so subtraction is not commutative
complement of a decimal	the number you add to get to 1 , e.g. the complement of 0.7 is 0.3
inverse operations	operations that 'undo' each other, such as addition and subtraction
a combination of one or more operations	

summand
summand + summand = sum

$$
\text { minuend } \text { - subtrahend }=\text { difference }
$$

A function machine:

output

My mathematical journey

Key words: what I need to say and write accurately

Word	Explanation
area	a measure of the space inside a two-dimensional shape
volume	a measure of the space inside a three-dimensional shape
multiple	you find the multiples of a number by multiplying it by an integer. e.g. the first six positive multiples of 7 are $7,14,21,28,35,42$
factor	a number which divides into another leaving no remainder. e.g. the factors of 12 are $1,2,3,4,6$ and 12 because $1 \times 12,2 \times 6$ and 3×4 all equal 12

Fingertip facts: what I need to learn by heart

\times	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

My mathematical journey

Key words and symbols: what I need to say and write accurately

The "radical" or "root" symbol: $\sqrt{ }$
Fingertip facts: what I need to learn by heart
The first fifteen square numbers:

Square number	$1^{\text {tt }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$	$9^{\text {th }}$	$10^{\text {th }}$	$11^{\text {th }}$	$12^{\text {th }}$	$13^{\text {th }}$	$14^{\text {th }}$	$15^{\text {th }}$
Value	1	4	9	16	25	36	49	64	81	100	121	144	169	196	225

The first ten cube numbers:

Cube number	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$	$9^{\text {th }}$	$1^{\text {th }}$
Value	1	8	27	64	125	216	343	512	729	1000

The prime numbers less than 100:

My mathematical journey
\(\left.\begin{array}{c}What do I need to remember

from before?

Addition and subtraction (NP2)

Exponents and roots (NP4)

Flexible calculating

The order of operations

Using visible and invisible

brackets to break the order of

operations\end{array}\right\}\)| What will I learn about in this |
| :---: |
| Directed numbers (NP6) |
| Substitution (A1, A2, A5) |
| Linear equations (A4) |

Fingertip facts: what I need to learn by heart
The order of operations is:

To break the order, use brackets.

()

My mathematical journey

What do I need to remember from before?

Addition and subtraction with integers and decimals (NP2)

Multiplication and division with integers and decimals (NP3)

Exponents and roots (NP4)
Order of operations (NP5)

What will I learn about in this unit?

Direction of numbers
Using negative numbers
Calculating with negative numbers

Where does this lead?
Algebraic expressions (A2, A3)
Linear equations (A4)
Formulae (A5)
Quadratic expressions (A11)

My mathematical journey

What do I need to remember from before?

Directed numbers (NP6)

What will I learn about in this unit?

Variable unknowns
Algebraic expressions
Substitution
Equations

Where does this lead?
Simplifying expressions (A2)
Multiplying expressions (A3)
Linear equations (A4)
Formulae (A5)

Key words and symbols: what I need to say and write accurately

Word	Explanation
variable	a number that can change its value, represented by a letter such as x or a green tile when we do not know its value
constant	a number that does not change, is fixed
operation	something that takes input numbers and turns them into output numbers, such as addition (including subtraction), multiplication (including division), exponentiation (including roots)
term	the parts of an expression separated by + or.- e.g. in the expression $4 x-\frac{1}{2} y$, the terms are $4 x$ and $\frac{1}{2} y$

My mathematical journey

| What do I need to remember |
| :---: | :---: |
| from before? |
| Addition and subtraction (NP2) |
| Multiplication and division |
| (NP3) |
| unit? |
| Exponents and roots (NP4) |
| Representing fractions with |
| pictures and numerals |
| Calculating with fractions |
| Finding fractions and wholes of operations (NP5) |
| Directed numbers (NP6) |

Key words and symbols: what I need to say and write accurately

Word	Explanation
proper fraction	a number less than 1, written as a fraction where the numerator is less than the denominator. e.g. $\frac{4}{9}$
improper fraction	a number greater than 1, written as a fraction where the numerator is greater than the denominator. e.g. $\frac{14}{9}$
mixed number	a number greater than 1, written as an integer and a proper fraction. e.g. $1 \frac{5}{9}$

