My mathematical journey

Key words and symbols: what I need to say and write accurately

The "radical" or "root" symbol: $\sqrt{ }$
Fingertip facts: what I need to learn by heart
The first fifteen square numbers:

Square number	$1^{\text {tt }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$	$9^{\text {th }}$	$10^{\text {th }}$	$11^{\text {th }}$	$12^{\text {th }}$	$13^{\text {th }}$	$14^{\text {th }}$	$15^{\text {th }}$
Value	1	4	9	16	25	36	49	64	81	100	121	144	169	196	225

The first ten cube numbers:

Cube number	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$	$9^{\text {th }}$	$1^{\text {th }}$
Value	1	8	27	64	125	216	343	512	729	1000

The prime numbers less than 100:

My mathematical journey
\(\left.\begin{array}{c}What do I need to remember \\
from before? \\
Addition and subtraction (NP2) \\
Exponents and roots (NP4) \\
Flexible calculating \\
The order of operations \\
Using visible and invisible \\
brackets to break the order of \\

operations\end{array}\right\}\)| What will I learn about in this |
| :---: |
| Directed numbers (NP6) |
| Substitution (A1, A2, A5) |
| Linear equations (A4) |

Fingertip facts: what I need to learn by heart
The order of operations is:

To break the order, use brackets.

()

My mathematical journey

What do I need to remember from before?

Addition and subtraction with integers and decimals (NP2)

Multiplication and division with integers and decimals (NP3)

Exponents and roots (NP4)
Order of operations (NP5)

What will I learn about in this unit?

Direction of numbers
Using negative numbers
Calculating with negative numbers

Where does this lead?
Algebraic expressions (A2, A3)
Linear equations (A4)
Formulae (A5)
Quadratic expressions (A11)

My mathematical journey

What do I need to remember from before?

Directed numbers (NP6)

What will I learn about in this unit?

Variable unknowns
Algebraic expressions
Substitution
Equations

Where does this lead?
Simplifying expressions (A2)
Multiplying expressions (A3)
Linear equations (A4)
Formulae (A5)

Key words and symbols: what I need to say and write accurately

Word	Explanation
variable	a number that can change its value, represented by a letter such as x or a green tile when we do not know its value
constant	a number that does not change, is fixed
operation	something that takes input numbers and turns them into output numbers, such as addition (including subtraction), multiplication (including division), exponentiation (including roots)
term	the parts of an expression separated by + or.- e.g. in the expression $4 x-\frac{1}{2} y$, the terms are $4 x$ and $\frac{1}{2} y$

My mathematical journey

| What do I need to remember |
| :---: | :---: |
| from before? |
| Addition and subtraction (NP2) |
| Multiplication and division |
| (NP3) |
| unit? |
| Exponents and roots (NP4) |
| Representing fractions with |
| pictures and numerals |
| Calculating with fractions |
| Finding fractions and wholes of operations (NP5) |
| Directed numbers (NP6) |

Key words and symbols: what I need to say and write accurately

Word	Explanation
proper fraction	a number less than 1, written as a fraction where the numerator is less than the denominator. e.g. $\frac{4}{9}$
improper fraction	a number greater than 1, written as a fraction where the numerator is greater than the denominator. e.g. $\frac{14}{9}$
mixed number	a number greater than 1, written as an integer and a proper fraction. e.g. $1 \frac{5}{9}$

My mathematical journey

What do I need to remember from before?

Number lines (NP1, 2, 3, and 6)
Decimals (NP1, 2, and 3) Fractions (NP7)

Finding a fraction of a number (NP7)

What will I learn about in this unit?

Equivalent fractions, decimals and percentages

Terminating and recurring decimals

Working with percentages

Where does this lead?
Proportional reasoning (NP10)
Contextual graphs (A9)
Percentage change (NP10, NP13)

Recurring decimals to fractions (NP14)

Key words and symbols: what I need to say and write accurately
32% means $\frac{32}{100}$
"percent" means "out of 100"

A terminating
decimal has a
finite (fixed)
number of
decimal places,
e.g. 0.215
e.g. 0.3

A recurring decimal has an infinite number of decimal places and its digits have a repeating pattern. The repetend is the repeating part.
We use dots to show the start and end of the repetend.
e.g. $0.333333333 \ldots=0 . \dot{3}$
e.g. $0.804804804 \ldots=0 . \dot{8} 0 \dot{4}$

Fingertip facts: what I need to learn by heart
Tenths and fifths:

Fraction	$\frac{1}{10}$	$\frac{2}{10}=\frac{1}{5}$	$\frac{3}{10}$	$\frac{4}{10}=\frac{2}{5}$	$\frac{5}{10}=\frac{1}{2}$	$\frac{6}{10}=\frac{3}{5}$	$\frac{7}{10}$	$\frac{8}{10}=\frac{4}{5}$	$\frac{9}{10}$	$\frac{10}{10}=1$
Decimal	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Percentage	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%

Eighths and quarters:

Fraction	$\frac{1}{8}$	$\frac{2}{8}=\frac{1}{4}$	$\frac{3}{8}$	$\frac{4}{8}=\frac{2}{4}=\frac{1}{2}$	$\frac{5}{8}$	$\frac{6}{8}=\frac{3}{4}$	$\frac{7}{8}$	$\frac{8}{8}=\frac{4}{4}=\frac{2}{2}=1$
Decimal	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1
Percentage	12.5%	25%	37.5%	50%	62.5%	75%	87.5%	100%

Ninths and thirds:

Fraction	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{3}{9}=\frac{1}{3}$	$\frac{4}{9}$	$\frac{5}{9}$	$\frac{6}{9}=\frac{2}{3}$	$\frac{7}{9}$	$\frac{8}{9}$	$\frac{9}{9}=1$
Decimal	$0 . \dot{1}$	$0 . \dot{2}$	$0 . \dot{3}$	$0 . \dot{4}$	$0 . \dot{5}$	$0 . \dot{6}$	$0 . \dot{7}$	$0 . \dot{8}$	$0 . \dot{9}=1$
Percentage	$11 . \dot{1} \%$	$22 . \dot{2} \%$	$33 . \dot{3} \%$	$44 . \dot{4} \%$	$55 . \dot{5} \%$	$66 . \dot{6} \%$	$77 . \dot{7} \%$	$88 . \dot{8} \%$	$99 . \dot{9} \%=100 \%$

My mathematical journey

What do I need to remember from before?

Number lines: single and double
(NP1 - NP8)

Approximating numbers
(NP1 - NP7)
Inequalities (NP1)
Fractions (NP7)
Directed numbers (NP6)

What will I learn about in this unit?

Using my calculator accurately and efficiently

Approximating numbers
Estimating answers to calculations

Error intervals for rounding Truncation

Key words and symbols: what I need to say and write accurately

- An error interval uses inequalities to show the range of values a number could be. We can show it with inequalities and on a number line.

- A surd is a root that does not have an integer or fraction answer, such as $\sqrt{2}$ or $\sqrt[3]{10}$.

Symbol	\approx	$<$	\leq	$>$	\geq
How to read it	is approximately equal to	is less than	is less than or equal to	is greater than	is greater than or equal to

Fingertip facts: what I need to learn by heart

Time frame conversions		Days in the months	
1 minute $=60$ seconds		January:	31 days
1 hour	$=60$ minutes	February:	28 days (and 29 days in a leap year)
	- 60 minutes	March:	31 days
1 day	$=24$ hours	April:	30 days
		May:	31 days
1 week	$=7$ days	June:	30 days
		July:	31 days
1 year	= 52 weeks	August:	31 days
1 year	= 365 days	September:	30 days
	- 65 day	October:	31 days
1 leap year	$=366$ days	November:	30 days
		December:	31 days

My mathematical journey
What do I need to
remember from before?
Exponents (NP4)
Directed numbers (NP6)
Expressions (A1)
What will I learn about in this unit?
Multiplying and dividing expressions and subtracting expressions
Index laws

Forming expressions \quad| Where does this lead? |
| :---: |
| Expanding and factorising |
| brackets (A3) |
| Solving equations (A4) |
| Quadratic expressions (A11) |

Key words and symbols: what I need to say and write accurately

Word	Explanation
variable	a number that can change its value, represented by a letter such as x or a green tile when we do not know its value
constant	a number that does not change, is fixed
operation	something that takes input numbers and turns them into output numbers, such as addition (including subtraction), multiplication (including division), exponentiation (including roots)
expression	a collection of constants, variables and operations e.g. $4 x, 2 p-5$ and $x^{2}+3 x+6$ are all expressions
term	the parts of an expression separated by + or.-
e.g. in the expression $4 x-\frac{1}{2} y$, the terms are $4 x$ and $\frac{1}{2} y$	

Fingertip facts: what I need to learn by heart
The index laws

1. When we multiply powers with the same base, we can add their exponents.

$$
x^{7} \cdot x^{3}=x^{10}
$$

2. When we divide powers with the same base, we can subtract their exponents.

$$
\frac{x^{7}}{x^{3}}=x^{4}
$$

3. When we find a power of a power, we can multiply the exponents together.

$$
\left(x^{2}\right)^{3}=x^{6}
$$

My mathematical journey

What do I need to remember from before?

Lines and angles (KS2)
Measuring (KS2)

What will I learn about in this unit?

Labelling lines and angles
Drawing and measuring lines and angles

Using compasses and a protractor Constructions and loci

Where does this lead?

Polygons and angles (GM2)
Congruence and similarity (GM4)

Advanced drawing, measuring and constructing (GM7)

Key words and symbols: what I need to say and write accurately

Word	Explanation
point	A point has no length or width (it exists in no dimensions, or OD)
line	A line has infinite length and no width (it exists in one dimension, or 1D). We use arrows to show its infinity in both directions.
ray	A ray is a section of a line with a starting point that continues infinitely in one direction. We use an arrow to show its infinity in one direction.
line segment	A line segment is a section of a line with a starting point and an end point.
construct	We construct when we only uses our compasses and straight edge (like a ruler).
bisector	'Bisect' means 'cut in half'. A bisector is a line that cuts another in half.
perpendicular	Perpendicular lines meet at a right angle.
equidistant	Equidistant means an equal distance from two points or lines.
locus (pl. loci)	The path of all points that fit a condition.

Angle types:

Acute $0^{\circ}<\theta<90^{\circ}$	Right $90^{\circ}=\theta$	Obtuse $90^{\circ}<\theta<180^{\circ}$	Straight $180^{\circ}=\theta$	$\begin{gathered} \text { Reflex } \\ 180^{\circ}<\theta<360^{\circ} \end{gathered}$	Full turn $360^{\circ}=\theta$

Greek letters:
α (alpha)
β (beta)
γ (gamma)
θ (theta)

Fingertip facts: what I need to learn by heart
You will need to learn the constructions for:

1. a perpendicular bisector
2. an angle bisector
3. a perpendicular from a point on a line
4. a perpendicular from a point near a line

My mathematical journey

What do I need to remember
from before?
Area models for multiplication
(NP3)
Collecting like terms (A2)
unit?
Expanding expressions with
brackets
Factorising expressions as the
opposite of expanding
Expanding two brackets

Key words and symbols: what I need to say and write accurately

Word	Explanation
variable	a number that can change its value, represented by a letter such as x or a green tile when we do not know its value
constant	a number that does not change, is fixed operation addithion (including subtraction), multiplication (including division), exponentiation (including roots)
expression	a collection of constants, variables and operations e.g. $4 x, 2 p-5$ and $x^{2}+3 x+6$ are all expressions
term	the parts of an expression separated by + or.- e.g. in the expression $4 x-\frac{1}{2} y$, the terms are $4 x$ and $\frac{1}{2} y$
expand	write an expression containing brackets without the brackets, by multiplying e.g. $2(x-5)=2 x-10$
factorise	write an expression without brackets as a multiplication with brackets

