My mathematical journey

What do I need to remember from before?

Number lines: single and double
(NP1 - NP8)

Approximating numbers
(NP1 - NP7)
Inequalities (NP1)
Fractions (NP7)
Directed numbers (NP6)

What will I learn about in this unit?

Using my calculator accurately and efficiently

Approximating numbers
Estimating answers to calculations

Error intervals for rounding Truncation

Key words and symbols: what I need to say and write accurately

- An error interval uses inequalities to show the range of values a number could be. We can show it with inequalities and on a number line.

- A surd is a root that does not have an integer or fraction answer, such as $\sqrt{2}$ or $\sqrt[3]{10}$.

Symbol	\approx	$<$	\leq	$>$	\geq
How to read it	is approximately equal to	is less than	is less than or equal to	is greater than	is greater than or equal to

Fingertip facts: what I need to learn by heart

Time frame conversions		Days in the months	
1 minute $=60$ seconds		January:	31 days
1 hour	$=60$ minutes	February:	28 days (and 29 days in a leap year)
	- 60 minutes	March:	31 days
1 day	$=24$ hours	April:	30 days
		May:	31 days
1 week	$=7$ days	June:	30 days
		July:	31 days
1 year	= 52 weeks	August:	31 days
1 year	= 365 days	September:	30 days
	- 65 day	October:	31 days
1 leap year	$=366$ days	November:	30 days
		December:	31 days

My mathematical journey
What do I need to
remember from before?
Exponents (NP4)
Directed numbers (NP6)
Expressions (A1)
What will I learn about in this unit?
Multiplying and dividing expressions and subtracting expressions
Index laws

Forming expressions \quad| Where does this lead? |
| :---: |
| Expanding and factorising |
| brackets (A3) |
| Solving equations (A4) |
| Quadratic expressions (A11) |

Key words and symbols: what I need to say and write accurately

Word	Explanation
variable	a number that can change its value, represented by a letter such as x or a green tile when we do not know its value
constant	a number that does not change, is fixed
operation	something that takes input numbers and turns them into output numbers, such as addition (including subtraction), multiplication (including division), exponentiation (including roots)
expression	a collection of constants, variables and operations e.g. $4 x, 2 p-5$ and $x^{2}+3 x+6$ are all expressions
term	the parts of an expression separated by + or.-
e.g. in the expression $4 x-\frac{1}{2} y$, the terms are $4 x$ and $\frac{1}{2} y$	

Fingertip facts: what I need to learn by heart
The index laws

1. When we multiply powers with the same base, we can add their exponents.

$$
x^{7} \cdot x^{3}=x^{10}
$$

2. When we divide powers with the same base, we can subtract their exponents.

$$
\frac{x^{7}}{x^{3}}=x^{4}
$$

3. When we find a power of a power, we can multiply the exponents together.

$$
\left(x^{2}\right)^{3}=x^{6}
$$

My mathematical journey

What do I need to remember from before?

Lines and angles (KS2)
Measuring (KS2)

What will I learn about in this unit?

Labelling lines and angles
Drawing and measuring lines and angles

Using compasses and a protractor Constructions and loci

Where does this lead?

Polygons and angles (GM2)
Congruence and similarity (GM4)

Advanced drawing, measuring and constructing (GM7)

Key words and symbols: what I need to say and write accurately

Word	Explanation
point	A point has no length or width (it exists in no dimensions, or OD)
line	A line has infinite length and no width (it exists in one dimension, or 1D). We use arrows to show its infinity in both directions.
ray	A ray is a section of a line with a starting point that continues infinitely in one direction. We use an arrow to show its infinity in one direction.
line segment	A line segment is a section of a line with a starting point and an end point.
construct	We construct when we only uses our compasses and straight edge (like a ruler).
bisector	'Bisect' means 'cut in half'. A bisector is a line that cuts another in half.
perpendicular	Perpendicular lines meet at a right angle.
equidistant	Equidistant means an equal distance from two points or lines.
locus (pl. loci)	The path of all points that fit a condition.

Angle types:

Acute $0^{\circ}<\theta<90^{\circ}$	Right $90^{\circ}=\theta$	Obtuse $90^{\circ}<\theta<180^{\circ}$	Straight $180^{\circ}=\theta$	$\begin{gathered} \text { Reflex } \\ 180^{\circ}<\theta<360^{\circ} \end{gathered}$	Full turn $360^{\circ}=\theta$

Greek letters:
α (alpha)
β (beta)
γ (gamma)
θ (theta)

Fingertip facts: what I need to learn by heart
You will need to learn the constructions for:

1. a perpendicular bisector
2. an angle bisector
3. a perpendicular from a point on a line
4. a perpendicular from a point near a line

My mathematical journey

What do I need to remember
from before?
Area models for multiplication
(NP3)
Collecting like terms (A2)
unit?
Expanding expressions with
brackets
Factorising expressions as the
opposite of expanding
Expanding two brackets

Key words and symbols: what I need to say and write accurately

Word	Explanation
variable	a number that can change its value, represented by a letter such as x or a green tile when we do not know its value
constant	a number that does not change, is fixed operation addithion (including subtraction), multiplication (including division), exponentiation (including roots)
expression	a collection of constants, variables and operations e.g. $4 x, 2 p-5$ and $x^{2}+3 x+6$ are all expressions
term	the parts of an expression separated by + or.- e.g. in the expression $4 x-\frac{1}{2} y$, the terms are $4 x$ and $\frac{1}{2} y$
expand	write an expression containing brackets without the brackets, by multiplying e.g. $2(x-5)=2 x-10$
factorise	write an expression without brackets as a multiplication with brackets

My mathematical journey

What do I need to remember from before?

Equality \& inverse operations (NP2, NP3, NP4)

Solving equations (A1)
Simplifying expressions (A2)
Expanding brackets (A3)

What will I learn about in this unit?

Mathematical equality
Balancing an equation
Solving all types of linear equations

Where does this lead?

Rearranging formulae (A5)
Equations of a line (A6)
Quadratic equations (A12) Using equations to solve geometry and probability problems (GM2 - GM11, SP7)

Key words and symbols: what I need to say and write accurately

Word	Explanation
unknown	a number that we do not know, represented by a letter
expression	e.g. $4 x, 2 p-5$ and $x^{2}+3 x+6$ are all expressions
when we write two expressions equal to one another	
equation	e.g. $2+3=5,2 x+3=5$ and $2 x+3=5 x-6$ are all equations
term	the parts of an expression separated by + or - e.g. in the expression $4 x-\frac{1}{2} y, ~ t h e ~ t e r m s ~ a r e ~$ $4 x$ and $\frac{1}{2} y$
solve	when we solve an equation, we find out what the value of the unknown is

Fingertip facts: what I need to learn by heart

An equation must always be balanced: whatever we do to one side we must also do to the other.

My mathematical journey

What do I need to remember from before?

Multiplicative reasoning (NP3)
Fractions (NP7)
Double number lines and ratio tables (NP8)

Percentages (NP8)

What will I learn about in this unit?

Direct and inverse proportion
Proportional reasoning in various contexts

Percentage changes and decimal multipliers

Where does this lead?

Ratio (NP11)
Advanced proportion and rates
of change (NP13)
Contextual graphs (A9)
Probability (SP3)

Key words and symbols: what I need to say and write accurately If two quantities are in direct proportion, the following two facts are true:

- There is a multiplicative relationship between them (e.g. if one doubles, the other doubles).
- If one is 0 , the other is 0 .

If two quantities are in inverse proportion the following fact is true:

- There is an inverse multiplicative relationship between them (e.g. if one doubles, the other halves).

A double number line shows a multiplicative relationship.

A ratio table shows a multiplicative relationship, like a double number line but without the scale.

(Notice how both these diagrams show the same information.)

Fingertip facts: what I need to learn by heart

- When working with direct or inverse proportion, I can only multiply or divide.
- To increase a quantity by a percentage, I add the percentage onto 100%, convert this to a decimal and multiply.
- e.g. To increase $£ 40$ by 12%, I find $100 \%+12 \%=112 \%=1.12$ and calculate $£ 40 \times 1.12$
- To decrease a quantity by a percentage, I subtract the percentage from 100%, convert this to a decimal and multiply.
- e.g. To decrease $£ 40$ by 12%, I find $100 \%-12 \%=88 \%=0.88$ and calculate $£ 40 \times 0.88$

My mathematical journey

What do I need to remember from before?

Measuring and drawing angles (Key Stage 2, GM1)

Basic angle facts (NP2)

What will I learn about in this unit?

Angle facts about lines and polygons

Types of quadrilaterals and other polygons

Bearings

Where does this lead?

Congruence and similarity (GM4)

Trigonometry (GM5, GM9)
Solving geometric problems, including circle theorems (GM6, GM7, GM11)

Key words and symbols: what I need to say and write accurately
A vertex (plural, vertices) is made when two lines meet. Sometimes called a corner.
Lines: vertical, horizontal, parallel, perpendicular, oblique
Angles: acute, obtuse, reflex, alternate, corresponding, interior
Triangles: scalene, isosceles, equilateral
Quadrilaterals: square, rectangle, parallelogram, rhombus, (isosceles) trapezium, kite, arrowhead
Polygons: triangle, quadrilateral, pentagon, hexagon, heptagon, octagon, nonagon, decagon
Symmetry can be reflective or rotational

Fingertip facts: what I need to learn by heart

Polygon	Number of sides	Interior angle sum
Triangle	3	180°
Quadrilateral	4	360°
Pentagon	5	540°
Hexagon	6	720°
Heptagon	7	900°
Octagon	8	1080°
Nonagon	9	1260°
Decagon	1440°	

Angle facts

- Adjacent angles on a straight line sum to 180°.
- Angles around a point sum to 360°.
- Vertically opposite angles are equal.
- Angles in parallel lines on adjacent or corresponding sides of the transversal are equal.
- Three-figure bearings are measured clockwise starting from north.

[^0]
My mathematical journey

What do I need to remember from before?

Bar charts and pictograms (KS2)
Median (NP1)
Mean (NP2)
Range (NP2)

What will I learn about in this unit?

Presenting and analysing sets of discrete data using charts and summary statistics - mean, mode, median, and range

Comparing data sets through charts and summary statistics

Knowing the ways statistics can
be used to tell a story

Where does this lead?

Presenting, analysing and comparing sets of continuous data, or bivariate data using charts and summary statistics (SP2, SP4, SP6)

Advanced statistical analysis
(GCSE Statistics; A Level Statistics)

Key words and symbols: what I need to say and write accurately

Types of data

Measures of location
(trying to capture where the data set is)

Bias: when one answer is more likely than another because of the people we ask

Set notation: a set of numbers can be written inside curly brackets, e.g.
$\{1,3,3,5\}$
$\overline{\boldsymbol{x}}$ is a symbol for the mean of a data set

Measures of spread
(trying to capture how wide the data set it)

Mode
most frequent
data point

The statistical enquiry cycle

Interpret
Analyse the data \qquad the data

[^0]: Notice that the interior angle sum increases by 180° each time.

