

Victory Vital s

P1 Conservation of Energy

Principle of the conservation of energy: ${\bf Energy}\ {\bf can}$

never be created or destroyed

Kinetic	All moving objects have kinetic	
energy	energy.	Efficiency
	$E_k = 0.5 x mass x speed^2$	llseful
	$E_{k} = 0.5 x m x v^{2}$	$=\frac{0.3ef}{T_{atal}}x100$
	(J) (kg) (m/s)	Τοται
Gravitationa	When an object moves higher off	There are no units for
l Potential	the ground	There are no units for
energy	E _p = mass x gravity x height moved	efficiency, your answer is
	E _p = m x g x Δh	either a decimal or a
	(J) (kg) (N/kg) (m)	percentage. Every
Elastic	Energy stored in springs, elastic	machine is always less
potential	bands and bouncy balls	than 100% efficient.
energy	$E_{a} = 0.5 x$ spring constant x	
0	-eBB	
00.87	extension ²	Efficiency and power
0	extension ² $E_e = 0.5 \times k \times e^2$	Efficiency and power Efficiency =
	extension ² $E_e = 0.5 \times k \times e^2$ (J) (N/m) (m)	Efficiency and power Efficiency = <u>useful power</u> r100
	extension ² $E_e = 0.5 \times k \times e^2$ (J) (N/m) (m) This equation is given in the exam	Efficiency and power Efficiency = <u>useful power</u> total power x100
	extension ² $E_e = 0.5 \times k \times e^2$ (J) (N/m) (m) This equation is given in the exam	Efficiency and power Efficiency = <u>useful power</u> x100
	extension ² $E_e = 0.5 \times k \times e^2$ (J) (N/m) (m) This equation is given in the exam	Efficiency and power Efficiency = $\frac{useful \ power}{total \ power} x100$ Wasted power =
A set of sto	extension ² $E_e = 0.5 \times k \times e^2$ (J) (N/m) (m) This equation is given in the exam	Efficiency and power Efficiency = $\frac{useful \ power}{total \ power} x100$ Wasted power = total power input –
A set of sto	extension ² $E_e = 0.5 \times k \times e^2$ (J) (N/m) (m) This equation is given in the exam	Efficiency and power Efficiency = <u>useful power</u> x100 Wasted power = total power input – useful power
A set of sto	extension ² E _e = 0.5 x k x e ² (J) (N/m) (m) This equation is given in the exam	Efficiency and power Efficiency = $\frac{useful \ power}{total \ power} x100$ Wasted power = total power input – $useful \ power$
A set of sto	extension ² $E_e = 0.5 \times k \times e^2$ (J) (N/m) (m) This equation is given in the exam	Efficiency and power Efficiency = $\frac{useful \ power}{total \ power} x100$ Wasted power = total power input – useful power
A set of stor	extension ² $E_e = 0.5 \times k \times e^2$ (J) (N/m) (m) This equation is given in the exam res of energy gravitational kinetic thermal	Efficiency and power Efficiency = <u>useful power</u> total power Wasted power = total power input – useful power

P2 Energy Transfer by Heating

Heat is thermal energy. It can be transferred from one place to another by conduction. Metals are good conductors of heat, but non-metals and gases are usually poor conductors. Poor conductors are called insulators.

All materials have a specific heat capacity value. The higher the value of the specific heat capacity, the more energy it takes to heat up a material. Metals have low values as they are easily heated up.

Equation for specific heat capacity: Energy = mass x specific heat capacity x change in temperature

Way to reduce heat loss from a house:

- Aluminium foil behind radiators
- Cavity wall insulation
- Loft insulation
- Thick walls
- Double glazing

The higher the temperature of an objects the more infrared radiation it emits

Subject: Physics Term 1

Victory Vilal &

Vocabulary:

Conservation of energy: energy cannot be created or destroyed

Dissipated energy: the energy that is not usefully transferred and stored in less useful ways

Efficiency: useful energy transferred by a device ÷ total energy supplied to the device

Elastic potential energy: energy stored in an elastic object as a result of it being deformed. For example, a stretched spring

Input energy: energy supplied to a device

Power: the energy transformed or transferred per second. The unit of power is the watt (W)

Spring constant: force per unit extension of a spring

Useful energy: Energy transferred to where it is wanted in the way that is wanted

Wasted energy: Energy that is not usefully transferred **Work:** the energy transferred by a force. Work done (joules, J) = force (newtons, N) x distance moved in the direction of the force (metres, m)

Black body radiation: the radiation emitted by a perfect black body (a body that absorbs all the radiation that hits it)

Infrared radiation: electromagnetic waves between visible light and microwaves in the electromagnetic spectrum Specific heat capacity: energy needed to raise the temperature of 1 kg of a substance by 1 °C Thermal conductivity: property of a material that determines the energy transfer through it by conduction

